7轴联动数控砂带磨床加工系统
叶片型面7轴联动数控砂带磨床加工系统原理图如图1 所示,为使叶片适应航空发动机大推重比的苛刻要求,叶片型面几何造型较为繁琐复杂,并且表面各刀触点处法向矢量与切向矢量变化频繁。数控砂带磨床的7个坐标轴如图1 所示,叶片单次装夹便可完成包括叶片主型面、叶根圆角、进排气边、阻尼台等诸多难加工区域的磨抛加工,较高程度上提高了叶片型面的磨抛加工精度及自动化程度。其中第7 轴可根据输入NC程序中M 轴数值的不同实时改变磨抛压力大小。 叶片型面刀触点加工余量计算 砂带磨削在作业过程中同时有材料切除与提升表面质量的双重作用,因此其在复杂曲面类零件光整加工领域有着不可或缺的作用。本文所应用的砂带磨削方式为接触轮与工件表面相接触,刀具与工件之间的接触方式可近似看作为线接触,此切削方式较其他接触方式相比工作效率更高。分析叶片三维几何模型与精密铣削后的工件,可以计算出各刀触点处的余量分布信息,将此分布信息作为磨抛压力施加的依据进行实际加工试验,以上分析方法具体流程为:
a. 依据实际磨抛精度设定匹配精度并评估计算参数点数目;
b. 将磨抛前待加工工件置于白光测量仪下,依据所设定的测量路径得到刀触点位置信息;
c. 将步骤b 得到的刀触点位置信息进行预处理;
d. 结合叶片三维几何模型、接触轮半径和砂带厚度等信息得到实际磨抛余量分布信息;
e. 计算施加于接触轮上的磨抛压力Fp;
f. 依据步骤e 得到的结果,对叶片型面进行实际磨抛,以达到最终加工目的。 如图3 所示为实际叶片型面整体磨抛余量分布云图,其中红色区域表示叶片型面上余量较多区域,由图可以看出叶片待磨抛余量总体分布于叶片两端进排气边处,其中部余量相对两边较少,故叶片中部施加压力较两边相比较小。
叶片型面刀触点处磨抛压力计算 本文采用的磨抛方式为纵抛,如图4 所示,砂带磨抛叶片型面的全部过程中,其刀心点常驻于其型面上方的偏置面上,单就轮型磨抛工具来看,可视为接触轮的刀心点始终被约束于偏置出的叶片型面上,其中偏置距离为砂带厚度、刀触点处的余量及接触轮半径的总和。为适应其导动面位置与形状的实时变化,任一刀触点的法向矢量始终重合于刀位点与刀触点的连线OP,故磨抛轨迹布排方式的不同实则与被磨抛曲面形状无太大关系。
为保证砂带在作业过程中,作用于接触轮上的力Fp不致于过大而导致过切现象。所以接触轮一般采用弹性材料,并行补足了作业过程中由于外部因素如温度、湿度等产生的误差。由于接触轮为弹性材料结合磨削工艺独特的加工方式,作业过程中,轮型工具必定会产生一定程度上的变形。
叶片实际磨抛加工试验