摘 要:分析了物流管道内表面磁力研磨的工艺特点,研究了各种励磁方法和研磨运动轨迹,提出了同时产生回转磁场和往复磁场的励磁方法,此法将同时实现磁性磨粒相对工件的周向回转运动和轴向往复运动,并对316L 管道进行了材料去除实验。
关键词:物流管道 磁力研磨 回转磁场 往复磁场
随着科学技术的发展,生物化学产业、医疗器械行业及食品行业对输送流体的管道的要求是高清洁度,其中内表面粗糙度Ra要求在 0.2μm以下。国外已开展管道内表面磁力研磨这方面的研究工作,主要集中在三个方面:磁性磨粒、加工装置、材料去除机理。国内注意到产业的需求,也开展了这方面的研究工作。
1 内表面磁力研磨简介
磁力研磨,就是将磁性磨粒放入磁场中,磨粒在磁场力的作用下沿磁力线排列形成磁力刷,这种磁力刷具有良好的抛磨性能,同时具有很好的可塑性,当微切削力大于磁场的作用力时,磨料会产生滚动或滑动,所以磨料不会对工件产生严重的划伤。
内表面研磨加工的几种磁极布置见图1。
2 工艺分析
通常使用的管道是316L不锈钢管材,轧制管道内原始表面粗糙度Ra1.0μm左右,Ry6.5μm左右,管长为6m或12m。
加工特点:
(1) 尺寸精度要求不高,表面粗糙度和光泽度要求高;
(2) 原始表面有轧制痕,管径尺寸波动大,圆度误差大;
(3) 长径比高达300:1,且弯曲度大,可达2mm/m以上。
3 研磨运动的实现
对于短工件内表面加工,有采用工件固定、磁极作回转运动,也有采用磁极固定、工件作回转运动。对于长管道加工,工件作高速回转不适宜,通常作回转运动的磁极采用永久磁铁,但永久磁铁在加工区产生的磁感应强度 B 仅为 0.3~0.4T。实际加工所需的强磁场一般由电磁线圈励磁产生,而电磁线圈的重量、体积相对永久磁铁要大得多。文献[1]提出了回转磁场,解决回转运动,磁性磨粒作回转转支,这样工件和磁极都不需要作高速回转运动。
研磨需要的运动轨迹应当是周期性的、均匀的、无主导方向的。为了使磨粒获得上述运动轨迹,需要增加轴向往复运动。对于内表面研磨,磁力研磨不同于一般的机械研磨。磁极对磁性磨粒的驱动是借助于磁性磨粒相对磁极的空间滞后量。因轴向相对运动是往复式的,磁性磨粒相对于工件的位移远小于磁极相对于工件的移动量。要获得良好的研磨轨迹夹角,整个机构需做大位移。往复频率与回转频率相近的往复运动,必然给整个装置的设计制造带来许多问题。文献[1]采用工件大位移,低频往复运动,很明显,研磨轨迹夹角很小。
应用直线电机的原理,使磁极轴向错位分布,可同时实现磨粒的周向回转运动和轴向往复运动。励磁原理见图2,磁极A、B、C在一截面上,磁极D、E、F在另一截面上,轴向距离约为0.1πD(D为工件的外径)。AD、BE、CF采用三相脉冲电源励磁。
磁性磨粒位置见图3。磨粒 1 运动轨迹是FA→A→AE→E→EC→C→CD→D→DB→B→BF→F→FA,磨粒 2 运动轨迹是CD→D→DB→B→BF→F→FA→A→AE→E→EC→C→CD。
用上述励磁方法,仅需采用类似无心磨床轴向进给机构,提供工件低速回转运动和轴向进给运动。磨粒回转一周需两个励磁脉冲周期,同时磨粒往复三次。
4 材料去除率实验
实验装置示意图如图4所示。装置安放在CA6140 机床导轨上,与大滑板相连,主轴转速为1140r/min,进给量为0.61mm/r,工件为 316L 不锈钢轧制管道,长40mm,外径32mm,内径30mm,加工间隙1mm,励磁电流 6A,加工区磁感应强度0.6T(空气介质),磁性磨料用量为3ml,研磨液5ml。实验结果见图5和图6。
图5 表面粗糙度与时间关系图
实验仅提供磨粒相对工件的回转运动,无往复运动。在工件内表面形成周向环纹。进一步实验将采用回转往复励磁方式,将有两个磁力刷同时进行研磨,材料去除率将增加近一倍,且将更有效地利用材料去除降低粗糙度。
参 考 文 献
1,T.Shinmura,E.Hatano,K.Takazawa.The Development of Magnetic-abrasive Finishing and Its Equipment by Applying a Rotating Magnetic Field.JSPE,1986,29(258)
2,T.Shinmura,H.Yamaguchi and Y.shinbo.A New Interanl Finishing Process of a Nonferromagnetic Tubing by Applying a Rotating Magnetic Field.JSPE,1992,26(4)
3,Kim Jeong-do,Choi Min-seog.Development and Finite Element Analysis of the Finishing System Using Rotating Magnetic Field.Int.J.Mach.Tools Manufact,1996,36(2)